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Abstract
Spin relaxation is investigated theoretically in two-dimensional systems.
Various semiconductor structures of both n and p types are studied in detail.
The most important spin relaxation mechanisms are considered. The spin
relaxation times are calculated taking into account the contributions to the
spin–orbit interaction due to the bulk inversion asymmetry and to the structure
inversion asymmetry. It is shown that in-plane anisotropy of electron spin
relaxation appears in III–V asymmetrical heterostructures. This anisotropy
may be controlled by external parameters, and the spin relaxation times differ
by several orders of magnitude.

1. Introduction

Spin dynamics in semiconductors has been investigated for more than four decades. During
this period, effects leading to creation and disappearance of equilibrium and non-equilibrium
microscopic magnetic moments have been discovered. Non-equilibrium spin is known to
appear in III–V and II–VI compounds upon absorption of circularly polarized light. This way
of creating non-equilibrium spins is named the method of optical orientation of electrons and
nuclei, and has proved to be the most effective in investigating the optical and kinetic properties
of bulk semiconductor samples and heterostructures. The problem of the loss of the average
microscopic spin is very important in the analysis of experimental data and device applications.

In bulk semiconductors, mechanisms of electron and hole spin relaxation have been studied
in ample detail both theoretically and experimentally [1]. It is known that the main mechanism
for electrons in crystals lacking inversion symmetry is, for a wide range of temperatures, the
kinetic mechanism proposed by D’yakonov and Perel’. Carriers lose their spin orientation
owing to precession in the effective magnetic field caused by those terms which are cubic in
wavevector. For holes in the valence band, where the spin–orbit interaction affects the energy
spectrum to a greater extent, the loss of spin is mainly associated with a spin flip in each
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scattering event (the Elliot–Yafet mechanism). However, the corresponding spin relaxation
rate is of the same order as the momentum relaxation rate, which makes studying this kind of
spin relaxation complicated.

In two-dimensional (2D) semiconductor structures, the relative importance of the above
mechanisms changes dramatically because of the appearance of new forms of energy spectrum
and spin–orbit interaction. The size-quantization effect suppresses the spin–orbit interaction
for holes and increases its strength for electrons. Therefore, it becomes possible to study spin
relaxation in p-type structures, and in n-type samples it is fundamentally different from that in
the bulk case.

The spin dynamics processes in 2D systems may exhibit natural, ‘intrinsic’ anisotropy
owing to presence of the growth axis. Analysis shows that in the conventional heterostructures
this anisotropy is not large, being only 50%. However, the authors of the present study have
shown theoretically that in-plane anisotropy of spin relaxation appears in III–V asymmetrical
heterostructures [2]. This anisotropy may be controlled by external parameters, and the spin
relaxation times differ by several orders of magnitude [3]. This opens up broad possibilities
for spin engineering.

We consider the two most important carrier spin relaxation scenarios: the D’yakonov–
Perel’ and Elliot–Yafet mechanisms. The Bir–Aronov–Pikus mechanism, associated with
exchange electron–hole interaction, is essential only in p-doped samples, which are beyond
the scope of this review, together with the excitonic spin relaxation.

In general, the spin relaxation equation can be written in the form

Ṡi = − Sj

τij
, (1)

where Si is the spin density, and (1/τij ) is the component of a second-rank tensor. The concrete
form of the tensor (1/τij ) depends on the symmetry of the system under study. Since in a 2D
structure a special direction exists (the growth axis), spin relaxation processes are anisotropic.
The symmetry of a single heterointerface of a semiconductor with the zinc-blende lattice is C2v.
This leads to three different spin relaxation times. However, if two interfaces of a quantum
well (QW) are equivalent, then the structure symmetry increases to D2d and the in-plane spin
relaxes isotropically. In semiconductors, spin relaxation processes are caused mainly not by an
external magnetic field, but by peculiarities of the band structure and scattering mechanisms.
These are the processes which are considered in the present review.

We write the electron or hole Hamiltonian in the form

H = H0 + V (2)

where H0 is the Hamiltonian of a system without weak spin–orbit interaction and scattering,
and these latter are described by the small perturbation V . Let |nk〉 and Enk be the eigenstates
and eigenvalues of H0:

〈nk|H0|n′k′〉 = Enkδnn′δkk′ . (3)

Here n is the index of a 2D electron or hole subband, and k is the wavevector characterizing
the motion in the heterostructure plane. In what follows, we assume that only the first subband
of size quantization is populated and the energy dispersion is isotropic. Therefore, we omit
the subband index and denote the energies as Ek . It is convenient to extract the diagonal in the
k part of the spin–orbit interaction:

HSO(k) = Vkk (4)

(small spin-independent corrections from Vkk are assumed to be included in Ek).
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The dynamics of the electron spin density and that of the hole angular momentum density
are determined by the time evolution of the respective density matrices. The diagonal in the
k-part of the density matrix, ρk, obeys the equation
∂ρk

∂t
= i

h̄
[HSO(k), ρk] − 2π

h̄

∑
k′ �=k

(
Vkk′Vk′kρk + ρkVkk′Vk′k

2
− Vk′kρk′Vk′k

)
δ(Ek − Ek′).

(5)

This equation is valid for any type of spin–orbit interaction and scattering. Below, we
analyse it for the cases of electrons and holes separately.

The review is organized as follows. Section 2 is concerned with 2D electron systems.
Section 3 is devoted to p-type quantum wells. The concluding section discusses the possible
ways to measure spin relaxation rates and to observe the spin relaxation anisotropy.

2. Electron spin relaxation

A particular feature of electron systems is that the spin–orbit interaction is weaker than the
momentum scattering. Therefore, it is convenient to represent the scattering amplitude as

Vkk′ = Iukk′ + V ′
kk′ (6)

where I is a 2 × 2 unit matrix and Tr(V ′
kk′) = 0. Since the spin–orbit interaction is weak,

u 	 V ′.
In the following, we assume a central elastic scattering. In this case, ukk′ is real and

dependent on the electron energyEk and the absolute value of the scattering angle θ = ϕk′ −ϕk,
where ϕk is the angular coordinate of k in the heterostructure plane.

Since HSO(k) and V ′
kk′ are small perturbations, the spin relaxation times are much longer

than the times in which the electron momentum distribution becomes isotropic. For this reason,
it is convenient to represent the density matrix as a sum [1]:

ρ = ρ + ρ ′, ρ ′ = 0.

Here the bar means averaging over ϕk and, hence, ρ depends only on Ek . The anisotropic
part of the density matrix is due to HSO and V ′ and, therefore, ρ ′ is small as compared with ρ.

To second order in HSO and V ′, equation (5) has the form
∂ρ

∂t
+
∂ρ ′

k

∂t
= i

h̄
[HSO(k), ρ] +

i

h̄
[HSO(k), ρ

′
k] − 2π

h̄
g

∮
dϕk′

2π
|ukk′ |2(ρ ′

k − ρ ′
k′)

− 2π

h̄
g

∮
dϕk′

2π
ukk′

(
V ′

kk′ − V ′
k′k

2
ρ + ρ

V ′
kk′ − V ′

k′k

2

)

− 2π

h̄
g

∮
dϕk′

2π
ukk′

(
V ′

kk′ + V ′
k′k

2
ρ ′

k + ρ ′
k

V ′
kk′ + V ′

k′k

2
− V ′

kk′ρ
′
k′ − ρ ′

k′V
′
kk′

)

− 2π

h̄
g

∮
dϕk′

2π

(
V ′

kk′V
′
k′kρ + ρV ′

kk′V
′
k′k

2
− V ′

kk′ρV
′
k′k

)
(7)

where g is the 2D density of electron states. It is noteworthy that the first two integrals in (6)
are of first order in the spin–orbit interaction, and the two last are of second order.

The electron spin density is given by

Se = g

∫ ∞

0
dEk Tr

(
ρ

σ

2

)
. (8)

Therefore, to analyse the spin dynamics, we have to find ρ. Since HSO(k) and V ′
kk′ are

anisotropic in k-space, the equations for ρ and ρ ′ are coupled and can be solved only for
concrete interactions HSO and V ′.
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In semiconductor heterostructures, spin relaxation can be caused by eitherHSO or V ′. The
first scenario is known as the D’yakonov–Perel’ mechanism, and the second as the Elliot–Yafet
mechanism. Even in the same heterostructure, the relative contributions of the mechanism may
vary with such parameters as temperature or electron concentration. Since either of the spin
relaxation mechanisms may be dominant, we investigate them separately.

2.1. D’yakonov–Perel’ mechanism

Let us consider a system with spin–orbit interaction described by the Hamiltonian HSO(k).
It is equivalent to a Zeeman term with the effective magnetic field dependent on k. In
the presence of scattering, the wavevector changes and, hence, the effective magnetic field
changes too. Therefore, in the case of frequent scattering, electrons are subjected to a
chaotically changing magnetic field. The spin dynamics in such a system has diffusion
character, which leads to loss of the specific spin orientation. This is the D’yakonov–Perel’
spin relaxation mechanism [4], and it is the main spin relaxation mechanism in many III–V
bulk semiconductors and heterostructures. It takes place even in the case of spin-independent
scattering, when

V ′ = 0.

In this case, in a time of the order of the transport time τtr , the density matrix becomes
isotropic, but there is no onset of spin relaxation processes. One can obtain a kinetic equation
for the spin density at times longer than τtr [2]:

Ṡe,i (t) = − 1

2h̄2

∞∑
n=−∞

∫ ∞
0 dEk (F+ − F−)τn Tr{[H−n, (Hn, σj )]σi}∫ ∞

0 dEk (F+ − F−)
Se,j (t). (9)

Here

Hn =
∮

dϕk

2π
HSO(k) exp(−inϕk) (10)

are Fourier harmonics of the spin–orbit Hamiltonian,
1

τn
= 2π

h̄
g

∮
dθ

2π
|ukk′ |2(1 − cos nθ) (11)

are the transport scattering rates, and F±(Ek) are the distribution functions of particles with
spin projection equal to ±1/2.

Equation (9) is valid for 2D electrons with any spin–orbit interaction HSO(k). Let us
consider an asymmetrical zinc-blende heterostructure. There are two contributions toHSO(k).
The first, the so-called bulk inversion asymmetry (BIA) term, is due to the lack of inversion
symmetry in the bulk of the material of which the heterostructure is made. To calculate this
term, one has to average the corresponding bulk expression over the size-quantized motion [5].
We investigate the heterostructure with growth direction [001] coinciding with the z-axis and
assume that only the first electron subband is populated. The BIA term has the form

HBIA(k) = γ [〈k2
z 〉(σyky − σxkx) + (σxkxk

2
y − σykyk

2
x)] (12)

where we choose the x- and y-directions aligned with the principal axes in the heterostructure
plane. Here 〈k2

z 〉 is squared operator (−i ∂/∂z) averaged over the ground state, and γ is the
bulk spin–orbit interaction constant. It is seen that HBIA contains terms that are linear and
cubic in k.

In asymmetrical heterostructures, there is an additional contribution to the spin–orbit
Hamiltonian, which is absent in the bulk. It is caused by structure inversion asymmetry (SIA)
and can be written as [6–8]

HSIA(k) = α(σxky − σykx) (13)
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where α is proportional to the electric field E acting on an electron:

α = α0eE. (14)

Here e is the elementary charge and α0 is a second spin–orbit constant determined both by the
bulk spin–orbit interaction parameters and by the properties of heterointerfaces. It should be
emphasized that, for asymmetrical heterostructures, E is mainly determined by the differences
of the wavefunction and band parameters across the interfaces, rather than being the average
electric field [9].

HSIA contains terms linear in k, as also does HBIA. From equation (9) it follows that
the harmonics with the same n are coupled in the spin dynamics equations. This leads to
interference of BIA and SIA terms linear in wavevector in the spin relaxation equations [2].

For HSO = HBIA + HSIA, the system has C2v symmetry. Therefore, equations (9) can be
rewritten as follows:

Ṡz = −Sz

τz
, Ṡx ± Ṡy = −Sx ± Sy

τ±
. (15)

The times τz, τ+, and τ− are the relaxation times of a spin parallel to the axes [001], [110], and
[11̄0], respectively.

If both the spin subsystems attain equilibrium before the onset of spin relaxation, then

F±(Ek) = F0(µ± − Ek) (16)

where F0 is the Fermi–Dirac distribution function and µ± are the chemical potentials of the
electron spin subsystems. If the spin splitting is small, i.e.

|µ+ − µ−| � |µ+|, |µ−|
then the expressions for the spin relaxation rates 1/τi (i = z,+,−) have the form

1

τi
=

∫ ∞
0 dEk (∂F0/∂Ek)"i(k)∫ ∞

0 dEk (∂F0/∂Ek)
(17)

where

"z(k) = 4τ1

h̄2

[
(γ 2〈k2

z 〉2 + α2)k2 − 1

2
γ 2〈k2

z 〉k4 +
1 + τ3/τ1

16
γ 2k6

]

"+(k) = 2τ1

h̄2

[
(α − γ 〈k2

z 〉)2k2 +
1

2
γ (α − γ 〈k2

z 〉)k4 +
1 + τ3/τ1

16
γ 2k6

]

"−(k) = 2τ1

h̄2

[
(α + γ 〈k2

z 〉)2k2 − 1

2
γ (α + γ 〈k2

z 〉)k4 +
1 + τ3/τ1

16
γ 2k6

]
.

(18)

Equations (17), (18) are valid for any electron energy distribution. If the electron gas is
degenerate, then the spin relaxation times are given by

1

τi
= "i(kF) (19)

where kF is the Fermi wavevector determined by the total 2D electron concentration N :

kF =
√

2πN. (20)

In this case, the scattering time τ1 in equations (18) coincides with the transport relaxation
time τtr , which can be determined from the electron mobility.

For non-degenerate electrons, the spin relaxation times are determined, in particular, by
the energy dependences of the scattering times τ1 and τ3. If τ1, τ3 ∝ Eν

k , then τ3/τ1 = constant
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and

1

τz
= 4τtr

h̄2

[
(γ 2〈k2

z 〉2 + α2)
2mkBT

h̄2 − ν + 2

2
γ 2〈k2

z 〉
(

2mkBT

h̄2

)2

+ (ν + 2)(ν + 3)
1 + τ3/τ1

16
γ 2

(
2mkBT

h̄2

)3]

1

τ±
= 2τtr

h̄2

[
(±α − γ 〈k2

z 〉)2 2mkBT

h̄2 +
ν + 2

2
γ (±α − γ 〈k2

z 〉)
(

2mkBT

h̄2

)2

+ (ν + 2)(ν + 3)
1 + τ3/τ1

16
γ 2

(
2mkBT

h̄2

)3]
. (21)

Here T is the electron temperature and kB is the Boltzmann constant. In the particular case of
short-range scattering, ν = 0, and τ1 = τ3 are equal to τtr , which is independent of temperature.

The spin relaxation times are very sensitive to the relationship between two spin–orbit
interaction strengths, γ 〈k2

z 〉 andα. From equations (19), (21) it follows that at low concentration
or temperature, 1/τz, 1/τ−, and 1/τ+ are determined by, respectively, the sum of squares γ 〈k2

z 〉
and α, their squared sum, and their squared difference. This may lead to a considerable
difference between the three rates, i.e. to a total spin relaxation anisotropy, if γ 〈k2

z 〉 and α are
close in magnitude. In real III–V systems, the relations between HBIA and HSIA may vary,
with HBIA or HSIA being dominant [10, 11] or these two terms comparable [12]. In the latter
case, a giant spin relaxation anisotropy is predicted [2].

The value of 〈k2
z 〉 depends on the heteropotential and can be calculated for concrete

asymmetrical heterostructures [3]. The constant γ is known for GaAs from optical orientation
experiments [1]. Correct theoretical expressions for γ and α0 have been derived in terms of the
three-band k · p model [12,13]. The heterointerfaces make a contribution to α0 in addition to
that from the bulk [14]. At large wavevectors, α0 starts to depend on k [15,16]. Here we assume
that the concentrations and temperatures are sufficiently low, allowing us to ignore this effect.

In [3], the spin relaxation times were calculated for a III–V heterojunction and a triangular
QW. The observance of spin relaxation anisotropy in all three directions is predicted for a wide
range of structure parameters and temperatures.

It has been shown [17–19] that inclusion of both the BIA and SIA terms, equations (12)
and (13), in HSO leads to a spin-splitting anisotropy of the conduction band in k-space in
III–V semiconductor heterojunctions. However, the spin relaxation analysis performed in [18]
ignored this effect. The authors of [20] demonstrated that the BIA and SIA terms interfere for
weak localization but are additive for spin relaxation. It was shown in [2] that those terms in
HSO which are linear in the wavevector cancel out in spin relaxation as well.

In a recent study [21], the spin relaxation anisotropy was observed for uncommon
(110) GaAs QWs. In this experiment, the spin relaxation in the growth direction was
suppressed because of the ‘built-in’ anisotropy of the sample, resulting from the presence
of heterointerfaces. By contrast, suppression of spin relaxation in the heterostructure plane
was predicted in [2]. Moreover, all three spin relaxation times are different in the last case,
and this effect takes place in ordinary (001) heterostructures.

We demonstrate that the terms in the spin–orbit Hamiltonian which are linear in the
wavevector interfere, and this leads to a huge anisotropy of the spin relaxation times. At high
concentration or temperature, this effect starts to disappear owing to the predominance of the
cubic in k-terms in HSO, which are only present in HBIA. However, the higher-order terms in
HSIA are not forbidden by symmetry, either. These terms can also interfere with those in HBIA,
and cause additional non-monotonic features in the dependences of the spin relaxation times
on the structure parameters.
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2.2. Elliot–Yafet mechanism

Let consider a 2D electron system without spin splitting of the spectrum. In this case, there
is no HSO(k) term in the Hamiltonian, and the spin–orbit interaction occurs due to scattering
only.

In the heterostructures based on III–V semiconductors, the spin-flip scattering can be
obtained in the Kane model taking into account a mixture of conduction band and valence
band states. The electron wavefunction has the form [22]

'sk(r) = ck exp(ik · ρ)[us(z)S + vsk(z) · R]. (22)

Here s = +,− enumerates two spin states at a given k; S and R = (X, Y, Z) are, respectively,
s- and p-like Bloch functions, and ck is the normalization factor. The functions us and vsk are
eight envelopes corresponding to the conduction and valence band, respectively, related by

vsk(z) = i(AK − iBσ × K)us(z). (23)

Here we introduce a 3D vector K = (k, kz) with kz = −i ∂/∂z, and two constants:

A = P

3

(
2

Eg
+

1

Eg + 0

)
B = −P

3

(
1

Eg
− 1

Eg + 0

)
(24)

whereEg and0 are the energy gaps between the bands "6 and "8, and "8 and "7, respectively,
and P is the Kane matrix element. The envelope function for the conduction band is

us(z) = ϕ(z)ws (25)

where ϕ(z) is the wavefunction of size quantization, and w+ = ↑, w− = ↓ are the spin
functions. The normalization factor is given to second order in A|K| and B|K| by

ck = 1 − (A2 + 2B2)(k2 + 〈k2
z 〉) (26)

where 〈k2
z 〉 = ∫

dz (dϕ/dz)2.
The scattering matrix element 〈sk|V |s ′k′〉 is a 2 × 2 matrix with respect to the indices s

and s ′. Therefore, in the notation (6) we obtain

ukk′ = u0(k − k′)[1 + (A2 + 2B2)(k · k′ − k2)]

+ (A2 + 2B2)

[
u0(k − k′)〈k2

z 〉 −
∫

dz u0(k − k′, z)(kzϕ)2

]

V ′
kk′ = (2AB + B2)

{∫
dz u0(k − k′, z)ϕikzϕ[σ × (k + k′)]z + iu0(k − k′)σ · (k × k′)

}
.

(27)

Here

u0(q, z) =
∫

dρV (ρ, z) exp(iq · ρ) (28)

with V (ρ, z) the scattering potential, and

u0(q) =
∫

dz u0(q, z)ϕ
2(z). (29)

The difference between ukk′ and u0(k − k′) is due to the spin–orbit interaction, similarly to
the 3D case [23].

The two terms in V ′ are different: the part containing σx and σy is linear in k, but the term
with σz is ∼k2. Hence, at k2 � 〈k2

z 〉, the first part is dominant, and V ′
kk′ can be represented as

V ′
kk′ = v(k − k′)[σ × (k + k′)]z (30)
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where

v(q) = (2AB + B2)

∫
dz u0(q, z)ϕikzϕ. (31)

It is noteworthy that a non-zero contribution at k = k′ is the impurity-induced SIA term,
physically meaning the force exerted on electrons by scatterers. This term is to be added to
HSO, and it manifests itself in the D’yakonov–Perel’ mechanism only.

It is seen from equation (30) that

V ′
kk′ = V ′

k′k

for central scattering, whereas v(k − k′) = v(Ek, |ϕk − ϕ′
k|). Therefore, averaging of

equation (7) over ϕk gives

∂ρ

∂t
= −2π

h̄
g

∮
dϕk

2π

∮
dϕk′

2π

{
V ′2

kk′ρ + ρV ′2
kk′

2
− V ′

kk′ρV
′
kk′

− ukk′ [(ρ ′
k′ − ρ ′

k)V
′
kk′ + V ′

kk′(ρ
′
k′ − ρ ′

k)]

}
. (32)

It can be shown that the term in square brackets is proportional to the integral∮
dθ u(θ)v(θ) sin θ

which is zero for central scattering.
Using equation (8), we obtain

1

τzz
= 2

τxx
= 2

τyy
= 16πm

h̄3

∫ ∞
0 dEk Ek[F+(Ek)− F−(Ek)]

∮
dθ v2(Ek, θ)(1 + cos θ)∫ ∞

0 dEk [F+(Ek)− F−(Ek)]
. (33)

It can be seen that the Elliot–Yafet mechanism results in a 50% anisotropy of spin relax-
ation times.

To second order in 0/Eg, we have for a Boltzmann gas

1

τzz
= 32

9

(
0

Eg

)2
kBT

Eg
r

1

τtr
(34)

with

r = h̄2

mEg

∫ ∞
0 dEk Ek exp (−Ek/kBT )

∮
dθ (1 + cos θ)[

∫
dz u0(q, z)ϕ(z)ikzϕ(z)]2∫ ∞

0 dEk Ek exp (−Ek/kBT )
∮

dθ (1 − cos θ)[
∫

dz u0(q, z)ϕ2(z)]2
. (35)

Here the wavevector transfer in the case of elastic scattering is described by

q =
√

8mEk

h̄2

∣∣∣∣sin
θ

2

∣∣∣∣
and account was taken of the fact that, at a given accuracy,

h̄2

m
= P 2

Eg
.

The factor r is of the order ofE1/Eg, whereE1 is the energy of the first level of size quantization.
For an infinitely deep rectangular QW of width 100 Å, Eg = 1.5 eV, and for randomly
distributed δ-scatterers, r = 1.2 × 10−2. Hence, for the parameters of GaAs (0 = 0.34 eV,
m = 0.067m0) and T = 77 K, we have τtr/τzz ∼ 10−5.

In addition to the scattering processes leading to spin relaxation considered above, there
is a short-range interaction making possible scattering of electrons from the "8 or "6 band to
the "7 band [1]. The same mechanism takes place in the 2D systems as well [24].
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3. Hole spin relaxation

A particular feature of p-type QWs is a strong spin–orbit interaction: the states at the top of
the valence size-quantized subbands have a certain projection of the angular momentum on the
growth axis. Therefore, ordinary spin-independent scattering leads to hole angular momentum
relaxation even in a symmetrical QW, when there are no additional spin–orbit terms: HSO = 0.
In other words, the Elliot–Yafet mechanism is very important for holes.

In a symmetrical p-type QW, each hole level is doubly degenerate. The wavefunctions
have the form

'sk = exp(ik · ρ)Fs(k, z) (36)

where s = 1, 2 enumerates the degenerate states, and Oz is the growth direction.
In a QW based on a III–V semiconductor, the hole wavefunction is a superposition of those

four states of the valence band top which correspond to the angular momentum projections on
Oz equal to 3/2, 1/2, −1/2, and −3/2. In the basis of these states,Fs(k, z) are four-component
columns which can be represented as [25]

F1 =




−v0C(z)

iv1S(z)eiϕk

−v2C(z)e2iϕk

iv3S(z)e3iϕk


 , F2 =




iv3S(z)e−3iϕk

v2C(z)e−2iϕk

iv1S(z)e−iϕk

v0C(z)


 . (37)

HereC(z) andS(z) are, respectively, symmetrical and asymmetrical functions of the coordinate
z, and the real coefficients vm (m = 0 . . . 3) for the ground subband are given by

vm ∼ km, k → 0. (38)

An analogue of the electron spin density in experiments on circular polarization of the
luminescence in low magnetic fields is the pseudospin of holes, Sh. Its value is proportional to
the degree of circular polarization of radiation for relatively weak hole orientation. The hole
pseudospin density is given by

Sh =
∑

k

Tr[ρkJ(k)] (39)

where J(k) is the pseudospin operator for the first hole level of size quantization. In the
basis (37), J i(k) has the form of a 2 × 2 matrix with the elements

J i
ss ′(k) =

∫
dz F †

s (k, z)J iFs ′(k, z) (40)

where J i are 4 × 4 matrices in the basis of the four states of the valence band top [22].
Calculation yields

J z(Ek) = σzjz (41)

J x + iJ y

2
=

(
0 ae−2iϕk

be4iϕk 0

)
(42)

J x − iJ y

2
=

(
0 be−4iϕk

ae2iϕk 0

)
(43)

where

jz(Ek) = ( 3
2v

2
0 − 1

2v
2
2)

∫
dz C2(z) + ( 1

2v
2
1 − 3

2v
2
3)

∫
dz S2(z) (44)

a(Ek) = v2
1

∫
dz S2(z)−

√
3v0v2

∫
dz C2(z) (45)

b(Ek) =
√

3v1v3

∫
dz S2(z)− v2

2

∫
dz C2(z). (46)
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It can be seen that J z depends on the energy Ek , whereas J x and J y depend on both Ek and
the direction of k. Therefore, we have to find not only the isotropic part of the density matrix,
ρ, but also the second and fourth Fourier harmonics.

The J i have complicated energy dependences. For instance, jz(Ek = 0) = 3/2 for the
first heavy-hole subband of size quantization. The dependence of jz on k is given in [26] for
different size-quantization subbands. It follows from equation (38) that a ∼ k2 and b ∼ k4

for small k, i.e. J x , J y are non-zero owing to non-parabolicity effects only.

3.1. Elliot–Yafet mechanism

Let us consider scattering from randomly distributed short-range impurities:

V (r) =
∑
i

V0δ(r − Ri ). (47)

Calculating the scattering amplitude Vss ′(k,k′) and using equation (5), we obtain the
following equation for the hole density matrix:

∂ρk

∂t
= −2π

h̄
g(Ek)

∮
dϕk′

2π
(〈|V11|2 + |V12|2〉ρk − 〈Vkk′ρk′Vk′k〉). (48)

Here, the angular brackets denote averaging over Ri , and account is taken of the fact that,
for (37) and (47),

〈V11V12〉 = 〈V22V12〉 = 0

and |Vss ′ | depends on θ = ϕk − ϕk′ . Note that the spin–orbit interaction in p-type QWs is
strong and, therefore, the division (6) makes no sense, and we use the total scattering amplitude
Vkk′ .

We expand the density matrix in a series

ρk =
∞∑

n=−∞
[Ifn(Ek) + σ · κn(Ek)] exp(inϕk). (49)

The spin-independent part obeys the equation

∂fn

∂t
= −2π

h̄
g(Ek)

∮
dθ

2π
〈|V11|2 + |V12|2〉(1 − cos nθ)fn. (50)

It is seen that the total number of particles with a given energy f0(Ek) is conserved, which
is correct for the elastic scattering under study. The Fourier harmonics fn with n � 1 relax
with the corresponding transport times.

For the z-component of κn we have

∂κzn

∂t
= −2π

h̄
g(Ek)

∮
dθ

2π
[〈|V11|2〉(1 − cos nθ) + 〈|V12|2〉(1 + cos nθ)]κzn. (51)

It is important that for small k,

ReV11 	 Im V11 	 |V12|.
Therefore, the first term in square brackets is close to the inverse transport time, and the

second is much smaller and describes spin relaxation. It is seen that the average pseudospin
with energy Ek , κ

z
0 , relaxes over time much more slowly that τtr . However, higher Fourier

harmonics change much faster.
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The same is true for κx,y . This can be readily shown for small k, when we can neglect V12

compared with V11. In this limit

∂(κxn ± iκyn )

∂t
= −"±

n (κ
x
n ± iκyn ) (52)

"±
n = 2π

h̄
g(Ek)

∮
dθ

2π
[〈|V11|2〉(1 − cos nθ)

+ 2〈(Im V11)
2〉 cos nθ ∓ 2〈ReV11 Im V11〉 sin nθ ]. (53)

This means that all harmonics relax with time ∼τtr except that with n = 0. The
zero-harmonic determines the hole Cooperon, important in the weak-localization effect. Its
relaxation is caused by the small term |V12| [27, 28]. However, the in-plane pseudospin
components J x , J y are determined by the non-zero-harmonics κx,y2,4 (see equations (42), (43))
and, hence, their relaxation is fast. Therefore, one can investigate only the dynamics of Sh,z
in optical experiments. The corresponding equation is

∂Sh,z

∂t
= −4π

h̄

∫ ∞
0 dEk g

2(Ek)[F+(Ek)− F−(Ek)]jz(Ek)
∮
(dθ/2π) 〈|V12|2〉∫ ∞

0 dEk g(Ek)[F+(Ek)− F−(Ek)]jz(Ek)
Sh,z. (54)

In [26], the value (2π/h̄)g(Ek)
∮
(dθ/2π) 〈|V12|2〉 was calculated as a function of k for different

scattering potentials.

3.2. D’yakonov–Perel’ mechanism

If we take into account the splitting between the pseudospin states in the valence subbands,
which may be caused by both BIA and SIA (in asymmetrical heterostructures), then the operator
HSO �= 0 for holes. For the ground subband, in the basis of the two degenerate states, it is a
2 × 2 matrix. Therefore, the problem is equivalent to that for electrons, and we can obtain the
equation for the density matrix dynamics. Expanding the density matrix in a Fourier series (49),
we obtain expressions for fn and κn. The former coincides with equation (50), and the latter
is as follows:

∂κin

∂t
= −2π

h̄
g(Ek)

∮
dθ

2π
τn Tr([H−n, [Hn, σi]]σi)κ

i
n. (55)

According to equations (41)–(43), in order to investigate the hole pseudospin dynamics, we
have to average overEk the equations with n = 0, ±2, and ±4. It can be seen that, similarly to
the case for the Elliot–Yafet mechanism, relaxation of Sh,x and Sh,y is fast, taking a time ∼τtr .
This is due to the anisotropic nature of the operators J x and J y . The only slowly relaxing
component is Sh,z. The corresponding equation has the form

∂Sh,z

∂t
= − 1

2h̄2

∞∑
n=−∞

∫ ∞
0 dEk g(Ek)[F+(Ek)− F−(Ek)]jz(Ek)τn Tr([H−n, [Hn, σz]]σz)∫ ∞

0 dEk g(Ek)[F+(Ek)− F−(Ek)]jz(Ek)
Sh,z.

(56)

In [29], correct equations were obtained for relaxation of the zero-harmonics of the density
matrix (for f0 and κ0). Therefore, the slow time calculated there describes the relaxation of
Sh,z only. The relaxation time of κx,y0 was incorrectly associated with that of Sh,x and Sh,y .

To calculate the hole pseudospin relaxation time, knowledge of the concrete form of HSO

for the structure being studied is necessary. The BIA contributions can be obtained by averaging
the corresponding bulk terms [22]. Moreover, the SIA contributions exist in asymmetrical
heterostructures [30]. All of them lead to hole pseudospin relaxation in accordance with
equation (56).
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4. Conclusions

The predicted spin relaxation anisotropy can be observed in time-resolved measurements
similar to those in [21]. In steady-state experiments, the in-plane electron spin relaxation
anisotropy can be investigated by means of the Hanle effect. To obtain the spin relaxation
times, account should be taken of the fact that the Landé g-factor has not only diagonal in-plane
components (gxx), but also off-diagonal ones (gxy) [31]. The degree of photoluminescence
polarization in a magnetic field B ⊥ z is described by the following expression:

P(B) = P(0)

1 + [µB(gxx ± gxy)B/h̄]2τzτ∓
(57)

where the upper and lower signs correspond, respectively, to the experimental arrangements
with B ‖ [110] and B ‖ [11̄0] (µB is the Bohr magneton). By changing the structure
asymmetry (e.g., by applying a gate voltage), one can modify the Hanle curves according to
the in-plane spin relaxation anisotropy.
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